LUMIONUS GREEN SOLAR SYSTEM SIZING CALCULATION IN 20 STEPS

by solarexpert and makrolab experience

Solar System Sizing Calculation Equation

1	ACEQW x h/Wk=Wh/Wk	Calculate AC equipment loads in Watt hours per week
2	Wh/Wk x 1.2=ACWh/WkCr	Multiply by 1.2 for inverter loss
3	Wh/WkCr / InV = AC Amph/Wk	Divide Wh/Wk corrected by inverter input voltage (typically 12V) to get Amp hours per week load
4	DCEQW x h/Wk=DCWh/Wk	Calculate DC equipment loads in Watt hours per week
5	DCWh/Wk / DCV = DCAmph/Wk	Divide DCWh/Wk by DC system voltage (12,24,48 or whatever it is) to get Amp hours per week load
6	AC Amph/Wk + DC Amph/Wk = TOTAL Amph/Wk	Add line 3 + line 5 to get total Amp hours per week load
7	TOTAL Amph/Wk / 7 = TOTAL Amph/Day	Divide by 7 to get amp hours per day
8	Amph/Day x Days of Storage needed = TOTAL System Amph	Multiply Amph/Day with the days of storage needed to get total system Amph storage needed
9	TOTAL System Amph / DISCHARGE LIMIT OF BATTERIES = TOTAL System Amph Corrected	Divide Total system Amp hours needed with the discharge limit of batteries (0.5 for 50%, it can be from 0.2 to 0.8, depending on the batteries used)
10	TOTAL System Amph Corrected x Winter Temperature multiplier = TOTAL System Amph Winter Corrected Battery Capacity	Multiply the TOTAL System Amph Corrected with the winter multiplier 26.7 deg C = 1.0 21.2 deg C = 1.04 15.6 deg C = 1.11 10.0 deg C = 1.19 4.4 deg C = 1.30 -1.1 deg C = 1.40 -6.7 deg C = 1.59

11	TOTAL System Amph Winter Corrected Battery Capacity / Amp hours battery rating = NUMBER OF BATTERIES IN PARALLEL NEEDED	Divide the total system amperage needed with the amp hours rating of your batteries to get number of batteries needed to be connected in parallel	
12	System Voltage (per example 12,24,48) / Battery Voltage = number of batteries wired in series	Divide system voltage with batteries voltage to get number of batteries wired in series needed	
13	NUMBER OF BATTERIES IN PARALLEL NEEDED x NUMBER OF BATERIES WIRED IN SERIES NEEDED = TOTAL NUMBER OF BATTERIES NEEDED	Multiply bater and batteries get total numl batteries need	in series to ber of
14	TOTAL Amph/Day (line 7) x 1.2 = TOTAL Amph/Day Battery loss corrected	Correct the TC Amph/Day ne battery loss, f	eded for
15	TOTAL Amph/Day Battery loss corrected / Average Sun Hours per day = Total Solar panel array Amps needed	Calculate the panel array ar for your syste	total solar nps needed
16	Total Solar panel array Amps / Peak amps by module = Total Number of Modules needed if wired in parallel (round off to the highest whole number)	Divide your total solar array Amps with the Peak amps produced by each module to get the total parallel number of modules needed. You calculate your Peak amps if you divide the module Wattage with the peak power point voltage – you get this in the specs of your modules	
17	Determine the number of modules in each series string needed to supply necessary DC battery Voltage	DC Battery voltage 12 24 48	Number of modules in each series string 1 2 4
18	Total Number of Modules needed if wired in parallel X number of modules in each series string = Total number of modules needed	Multiply the total number of modules if wired in parallel by the multiplyer from the chart above according to battery voltage	

19	Peak amps by module x Total number of modules needed = Amp rating of solar charger	Multiply the peak amps by module by the number of modules to get the MINIMUM Amp rating for the charger
20	(ACEQW simultaneous loads + Electric motor surges) x 1.2 = INVERTER POWER RATING	Calculate your inverter power rating by multiplying your AC simultaneous loads and possible surges from electric motors and multiply by 1.2 for inverter loss to get total inverter power rating.

ACEQW = AC equipment watts DCEQW = DC equipment watts h/Wk = hours of operation per week Wh = watt hours Wk = week ACWh/WkCr = AC watt hour per week corrected DCWh/Wk = DC watt hours per week InV = inverter input voltage ACAmpH/Wk = AC amp hours per week load